If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+52x-6=0
a = 18; b = 52; c = -6;
Δ = b2-4ac
Δ = 522-4·18·(-6)
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(52)-56}{2*18}=\frac{-108}{36} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(52)+56}{2*18}=\frac{4}{36} =1/9 $
| 71+-9x=53 | | 5x27=5( | | 6x+5+2x-11=180 | | 9x+(7-6)=1 | | 10(y-6)=40 | | F(s)=14(s-65)+45 | | -1/2=+1/2+5/7y | | 10n^2+15n-25=6n^2 | | 9(-8x-7)-1=-72x-64 | | a=2*3*9+2*7*9+2*3*7 | | -6(6x-3)-2=-34x+14 | | 3(-2x+5)+7=-6x+19 | | 3(2x+2)+3(6x+6)+5=24x+30 | | 0.2(x+30)-0.04(x-20)=13.2 | | -20-50n=-30+10n | | 7-x*x=2.9 | | 13y^2+16y-20=0 | | w+8*w=3.0 | | 115-2.50x=95-2(40) | | -3x+12=22 | | -24r+16=-8r+40 | | -8(3x-2)=-8x+40 | | X=115-1.333333333y | | 3y+63=10y+14 | | X+4/3y=115 | | 3(6+4x)=8x-10 | | Y-18=x-13 | | -4(5-5n)-2(n-6)=-80 | | 172x=3.6 | | 5x-7+8=-24 | | 2050-x=198 | | 8=-7/4w |